1,187 research outputs found

    Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene

    Get PDF
    We investigated the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrated that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. Our observations are accounted for by considering the interplay between photo-induced changes of both the Drude weight and the carrier scattering rate. Notably, we observed multiple sign changes in the temporal photoconductivity dynamics at low carrier density. This behavior reflects the non-monotonic temperature dependence of the Drude weight, a unique property of massless Dirac fermions

    Optical characterization of Bi2_2Se3_3 in a magnetic field: infrared evidence for magnetoelectric coupling in a topological insulator material

    Full text link
    We present an infrared magneto-optical study of the highly thermoelectric narrow-gap semiconductor Bi2_2Se3_3. Far-infrared and mid-infrared (IR) reflectance and transmission measurements have been performed in magnetic fields oriented both parallel and perpendicular to the trigonal cc axis of this layered material, and supplemented with UV-visible ellipsometry to obtain the optical conductivity σ1(ω)\sigma_1(\omega). With lowering of temperature we observe narrowing of the Drude conductivity due to reduced quasiparticle scattering, as well as the increase in the absorption edge due to direct electronic transitions. Magnetic fields HcH \parallel c dramatically renormalize and asymmetrically broaden the strongest far-IR optical phonon, indicating interaction of the phonon with the continuum free-carrier spectrum and significant magnetoelectric coupling. For the perpendicular field orientation, electronic absorption is enhanced, and the plasma edge is slightly shifted to higher energies. In both cases the direct transition energy is softened in magnetic field.Comment: Final versio

    Two-component radiation model of the sonoluminescing bubble

    Full text link
    Based on the experimental data from Weninger, Putterman & Barber, Phys. Rev. (E), 54, R2205 (1996), we offer an alternative interpretation of their experimetal results. A model of sonoluminescing bubble which proposes that the electromagnetic radiation originates from two sources: the isotropic black body or bramsstrahlung emitting core and dipole radiation-emitting shell of accelerated electrons driven by the liquid-bubble interface is outlined.Comment: 5 pages Revtex, submitted to Phys. Rev.

    Types of boredom: an experience sampling approach

    Get PDF
    The present study investigated different types of boredom as proposed in a four-categorical conceptual model by Goetz and Frenzel (2006; doi:10.1026/0049-8637.38.4.149). In this model, four types of boredom are differentiated based on degrees of valence and arousal: indifferent, calibrating, searching, and reactant boredom. In two studies (Study 1: university students, N = 63, mean age 24.08 years, 66 % female; Study 2: high school students, grade 11, N = 80, mean age 17.05 years, 58 % female), real-time data were obtained via the experience-sampling method (personal digital assistants, randomized signals). Boredom experiences (N = 1,103/1,432 in Studies 1/2) were analyzed with respect to the dimensions of valence and arousal using multilevel latent profile analyses. Supporting the internal validity of the proposed boredom types, our results are in line with the assumed four types of boredom but suggest an additional, fifth type, referred to as “apathetic boredom.” The present findings further support the external validity of the five boredom types in showing differential relations between the boredom types and other affective states as well as frequency of situational occurrence (achievement contexts vs. non-achievement contexts). Methodological implications as well as directions for future research are discussed

    Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys

    Get PDF
    High entropy shape memory alloys (HE-SMAs) show reversible martensitic phase transformations at elevated temperatures. HE-SMAs were derived from binary NiTi, to which the elements Cu, Pd, Zr and Hf are added. They represent ordered complex solid solutions. Their high temperature phase is of B2 type, where the added elements occupy sites in the Ni-(Cu, Pd) and Ti-sub-lattices (Zr, Hf). In the present study, advanced microstructural and thermal characterization methods were used to study the effects of the additional alloy elements on microstructures and phase transformations. The ratios of Ni-equivalent (Ni, Cu, Pd) and Ti-equivalent (Ti, Zr, Hf) elements in HE-SMAs were varied to establish systems that correspond to stoichiometric, under- and over-stoichiometric binary alloys. It is shown that basic microstructural features of cast and heat-treated HE-SMAs are inherited from the nine binary X–Y subsystems (X: Ni, Cu, Pd; Y: Ti, Zr, Hf). The phase transition temperatures that characterize the martensitic forward and reverse transformations depend on the concentrations of all alloy elements. The data obtained demonstrate how martensite start temperatures are affected by deviations from the composition of an ideal stoichiometric B2 phase. The findings are discussed in the light of previous work on the concentration dependence of SMA transformation temperatures, and directions for the development of new shape memory alloy compositions are proposed. © 2020 The Author

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
    corecore